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ABSTRACT 
 
Compressible flows between two parallel disks are frequently encountered in fluid power components such as 
pneumatic statistical bearings, pneumatic nozzle-flapper valves and pneumatic valves. Such flows are difficult to solve 
theoretically because both viscous and compressible effects exist. In the present study, a theory is developed to predict 
the flow characteristics, assuming that the flow is one dimensional and steady. Experiments are performed, and their 
results agree fairly well with theoretical results. 
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NOMENCLATURE 
  

Subscript A : flow sectional area=2πrh 
e : outer edge of the gap b : critical pressure ratio 
i : inner edge of the gap cp : specific heat at constant pressure 
0 : upstream condition di : valve seat hole diameter=2ri 
* : condition at the choked flow f : friction factor=0.0026 
 h : gap clearance 

INTRODUCTION k : specific heat ratio=1.40 
 LL : lap length (see Figure 1) 
Flows between two parallel disks are frequently seen in 
fluid power components such as statistical bearings, 
nozzle-flapper valves and seat valves. Although many 
theoretical papers [1] have been published for 
incompressible flows, those related to compressible 
flows are not so many, because for such flows both 
viscous and compressible effects should be taken into 
consideration. 

M : Mach number 
p : absolute pressure 
R : gas constant=287 J/(kg.K) 
r : radial coordinate 
T0  : stagnation temperature, constant for an adiabatic 
flow 
T : absolute temperature 
V : mean velocity at a section 

Mori [2] analyzed an unstable phenomenon named 
whirl which occurs in a gas bearing. Ogami [3] 

w : mass flow rate 
ρ : fluid density 

  



and analyzed a one-dimensional viscous compressible flow 
by numerical method. Kamiyama and Yamamoto [4] 
numerically investigated a compressible flow in 
aerostatic journal bearing. Kobayashi [5] investigated 
the stability of gas-lubricated journal bearings 
experimentally and numerically. 
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In the present study, the authors assumed the flow 
between two parallel disks to be one-dimensional and 
steady and developed a theory to solve the flow. 
Experiments were performed, and the comparison 
between theoretical and experimental results showed 
that the theory can predict the flow characteristics.  

 
Generally speaking, Eq.(8) may be difficult to be 
solved. Friction factor f, however, has normally a small 
value and the effect of M2 in the first term in the 
parenthesis on the right-hand side will be small. 
Accordingly, assuming that M2 is constant,   
 THEORY ( ) const22222 =+=≈ eiav MMMM  (9)  

The flow between two disks as shown in Figure 1 is to 
be analyzed [6]. 

 
Then, Eq.(8) can be integrated from ri to re to obtain 
the following: The equation of state for an ideal fluid is 
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  p=ρRT (1) 
 
Mach number is 
 
  M2=V2/(kRT) (2) 

 
where 

  
The energy equation for adiabatic flow is 
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The continuity equation is 
 
  w=AρV=2πrhρV (4) 
 
Applying the equation of motion for steady flow in the 
radial direction, we have 
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where τ is the wall shear stress and dAw is the wetted 
area on which τ  is exerted. 
Provided that the friction losses between two disks are 
similar to those in a circular tube, friction factor f is 
defined by  

 
Figure 1 Flow between two parallel disks 

 
 

  
22V

f
ρ
τ

=  (6) 

 
and 
 

( )

( )
h

rrfkM

h
rrfkM

ieav

ieav

−
+≈








 −
=

2

2

1

expα
 (12) 

 
Differentiating Eqs.(1), (2), (3) and (4), and combining 
these equations, Eqs.(5) and (6), we finally obtain the 
following: 
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Choked flow rate w* is Outward flow  
Integrating Eq.(7), we get  
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When Mach number Mi at the inner end is unity, 
Eq.(10) is rearranged as 
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where Mec is the Mach number at the outer end 
corresponding to Mi=1.  Substituting the value of Mec into Eq.(17), critical 
pressure ratio b is expressed as In an outward flow, pressure pe at the outer edge 

divided by stagnation pressure p0 upstream is usually 
taken as pressure ratio for outward flow.  
The following formula holds for isentropic change: 
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Inward flow  

Combining Eqs.(2), (3) and (15) we have 
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Consider an inward flow in which the flow is reversed. 
In this case subscript e denotes upstream conditions, 
and subscript i downstream ones in Figure 1. Since 
most equations derived for an outward flow can be 
applied as well, we will describe here only those 
equations which need modification. It should be noted 
that velocity V is negative, so that shear stress τand 
friction factor f are negative. Consequently α in Eq. 
(10) should be replaced by 1/α 

 
By substituting pi in Eq.(16) into Eq.(13) and using 
Eq.(10), the pressure ratio p0/pi is obtained as follows:  
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Giving any value of Me into Eq.(21), we can get Mi. 
Equation (16) is modified as follows: 
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When substituting any Mach number Mi at the inner 
edge and Mach number Me obtained from Eq.(10) into 
Eq.(17), the pressure ratio pe/p0 corresponding to Mi 
can be calculated. 

 
In an inward flow, pressure pi at the inner edge divided 
by stagnation pressure p0 upstream is usually taken as 
pressure ratio for inward flow, which is expressed by 

Next, mass flow rate w is to be obtained.  Substituting 
Eqs.(1), (2), (16) and (15) into Eq.(4) we get 
  

( )
( )

( )i
i

k
k

i

i
ii

MGT
p

R
khr

Mk

M
T
p

R
khrMw

12

2
11

2

0

0

12
1

20

0

π

π

=







 −
+

=
−
+

(18) 

  ( ) ( )iei

ei

MHMGr
r

p
p 1

0

=  (23) 

 
Substitution of Eq.(21) into Eq.(23) yields 
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  B 
When substituting any Mach number Me at the outer 
edge and Mach number Mi obtained from Eq.(21) into 
Eq.(17), the pressure ratio pi/p0 corresponding to Me 
can be calculated. 

 120mm 
 
 A 
 

Using Eq.(21) mass flow w is expressed by  
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Figure 2 Test valve 
 

  
Choked flow rate w* is  RESULTS 
  

Flow characteristic 
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calculated results with the experimental ones for an  
  

When Mach number Mi at the inner end is unity, 
Eq.(21) is rearranged as 
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where Mec is the Mach number at the outer end 
corresponding to Mi=1. 
Substituting the value of Mec into Eq.(24), critical 
pressure ratio b is expressed as 
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(a) Outward flow 
  
When there is no friction loss, α becomes unity, and 
b=0.528, which coincides with the value for the 
isentropic flow in a convergent nozzle. 
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EXPERIMENT 

 
Figure 2 shows the test valve used. In an outward flow 
compressed air was fed from port A, and in an inward 
flow from port B. 
The supply pressure of air was kept 500 kPa abs, and 
air temperature was 290 K during experiments. The 
downstream pressure (pe for an outward flow and pi for 
an inward flow) was adjusted with a throttle valve 
placed downstream of the test valve. 
In Figure 1, actual dimensions are as follows:  
  Outer radius re=10 mm,  
  Valve seat hole diameter di=5 and 10 mm,   (b) Inward flow 
  Lap length LL=1, 3 and 5 mm.  
 Figure 3 Comparison between theory and 
  experiment, di =10 mm, LL=5 mm  
 

  



 outward flow with some modification in lap length 
explained later, and Figure 3(b) for an inward flow.   
The calculated results agree well with the experimental 
ones for inward flows. The values of critical pressure 
ratio are close to 0.528, the value of critical pressure 
ratio for isentropic flow in a convergent nozzle. 
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In an outward flow, however, calculated results did not 
agree well with experimental ones. And the calculated 
results deviate from the experimental ones as 
approaching choke flow. It can be deduced that flow 
separation might occur at the inner end. It would be 
necessary to estimate the lap length smaller than the 
real size. In Figure 3(a), LL was set to 0.9 mm instead 
of 5 mm in calculation, the difference in LL is 
considered to be the flow separation. After this 
modification, calculated results agree fairly well with 
experimental ones, as shown in Figure 3(a). 

 Figure 4 shows that for the same gap width choked 
flow rate w* for an outward flow is less than that for an 
inward flow. 

Figure 4 Comparison between outward and inward 
flows, di=5 mm, h=0.22 mm 

 As can be seen from Figures 5(a) and 5(b), critical 
pressure ratios for outward flows are greater than those 
for inward flows. 
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Effect of viscosity 
Throughout the experiment, gap width h was between 
0.1 and 0.3 mm. For such widths, α in Eq. (12) is 
approximately unity, and the viscous effect of air can 
be neglected. For smaller gap width, however, it would 
be necessary to take into consideration the effect of 
friction. 
Effect of lap length 
Figure 5(a) shows the experimental results of the effect 
of lap length on critical pressure ratio for outward 
flows, and Figure 5(b) for inward flows. In theory, the 
lap length only affects friction, which is very small in 
the range of experiment, the results for inward flows 
are reasonable. 

  
(a) Outward flow 

In outward flows, however, critical pressure ratio 
increases with an increase in lap length. 
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Critical pressure ratio vs. mass flow rate 
Figures 6 show the relations between critical pressure 
ratio b and choked mass flow rate w*. According to the 
theory, as can be seen from Eqs.(20) and (27), values 
of critical pressure ratio are independent of choked 
flow rate in frictionless flows (α=1). 
In experiment, choked mass flow rate w* gives little 
effect on b for both outward and inward flows as 
shown in Figures 6, and the theory agrees to the 
experimental results in the range of the experiment. 
More experiments with larger flow rates would be 
necessary, however, to confirm the validity of the 
theory. 
   (b) Inward flow  Figure 5 Effect of lap length           

  



5) Friction losses through the gap little affect the values 
of w* and b in the range of this study, i.e., gap widths 
larger than 0.1 mm. If the gap width were more 
reduced, however, the frictional effect would appear; 
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6) In outward flows, an increase in lap length increases 
critical pressure ratio, while in inward flows lap length 
little affects the value. 
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CONCLUDING REMARKS 
 
A theory is developed for flow characteristics between 
two parallel disks, and its validity is confirmed by the 
comparison with experimental results. In regard to 
outward flows, however, some discordance between 
theory and experiment is observed. 
Consequently, the following conclusions are drawn: 
1) In inward flows, flow characteristics can be 
predicted from the theory.  The value of critical ratio is 
close to that of convergent nozzle flow; 
2) In outward flows, some modification is necessary to 
apply the theory to flow characteristics, i.e., the lap 
length in lap length should be taken smaller than real 
size. 
This is considered to result from the separation at the 
inner edge of the gap; 
3) For the same gap width, the choked flow rate for 
outward flows is less than that for inward flows; 
4) Critical pressure ratio for outward flows is generally 
larger than that for inward flows; 
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