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ABSTRACT 

 

Hydraulic pump performance monitoring methods that can detect failures by using the outlet pressure signals of the 

pump are investigated. Two faults diagnosis methods, namely conventional spectral analysis method based on FFT and 

wavelet based multi-resolution analysis method, are introduced and their efficiency and reliability are discussed. The 

performance of both diagnoses methods were evaluated based on simulation results and experimental results. Validation 

results obtained from using both methods in analyzing the same sets of data indicated that the wavelet transform based 

fault diagnosis method showed a more sensitive and robust detecting results for all three tested pump faults than that 

obtained from a spectrum analyses approach. 
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INTRODUCTION 

 

The purpose of performance monitoring and fault 

diagnostics are to detect and distinguish faults occurring 

in machinery, in order to provide a significant 

improvement in plant economy, reduce operational and 

maintenance costs, and improve the level of operation 

safety. Hydraulic systems have been used in a wide 

variety of applications ranging from precision control 

on machine tools to task implementation on 

construction equipment and aircraft because of its 

advantages, i.e., the high force to weight ratio, forces 

can be rapidly generated and transmitted over 

considerable distances with very little loss, etc. A 

hydraulic pump is a key component in a hydraulic 

system, and its performance will affect the reliability of 

any hydraulic systems. Therefore, a sensitive and 

accurate faults detection and identification method for 

hydraulic pump performance monitoring and diagnosis 

has great interest to the industry.  

For hydraulic pump/motor performance monitoring, 

potential signals which can be employed include oil 

chemical properties, temperature signal, vibration of the 

shell, flow rate and pressure signals. Efforts have been 

made to implement on-line monitoring and fault 
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detection techniques using easily monitored operating 

parameters. Jardine et al. [1] used a proportional 

hazards modeling statistical approach to optimize a 

mine haul truck wheel motor condition monitoring 

program by analyzing oil test results. Although oil 

analysis has proven a good tool for timing oil changes 

and even fault detections, it has two drawbacks: 1) the 

difficulty of obtaining a representative of oil sample and 

2) the temporal requirements for sampling, testing, and 

evaluating results. Flow data is a hydraulic pump 

operation parameter that is a good indicator of pump 

failure; however, flow data is not cheaply and reliably 

obtained during typical operation and is not applicable 

to variable displacement pump either in real 

applications. As temperature signals are associated with 

the working environment, they are not fit to detect the 

malfunction of pump. Therefore, reliable means of 

analyzing more readily sensed signals is more desirable. 

Because of high noise levels in the pump pulsation 

pressure signal, many existing health diagnosis 

methods, such as limit checking, spectrum analysis, and 

logic reasoning, cannot effectively perform a reliable 

on–line health diagnosis for hydraulic pumps [2].  

Many different diagnostic tools have been used for 

health diagnosis purposes and system performance 

monitoring. An and Sepehri [3] demonstrated a scheme 

in which an extended Kalman Filter is used to estimate 

the state of a hydraulic actuator system. By comparing 

with the corresponding measured states, the residuals 

between the actual state of system and the estimator 

could be used to determine if there any defects occur. 

Wolfman, et al. [4] proposed a multi-model approach 

for fault detection and diagnosis of a centrifugal pump. 

The whole process was decomposed into three 

sub-models pump, pipes, and mechanical subsystem. 

Individual neural-fuzzy sub-model was associated with 

each component to generate relative normal state. 

Evaluation residuals then were designed to implement 

the fault detection process. The superior of this method 

is the capability of supervision of nonlinear system and 

consequently the accuracy of the diagnosis may be 

improved.  

Parametric models have been developed and tested for 

on-line diagnostics of hydraulic pumps [5][6]. Although 

sound and proven theoretical approaches to on-line 

hydraulic pump health diagnosis, these methods are 

dependent on the accuracy of the parametric model 

chosen [7]. Since many factors can influence pump 

performance, parametric models are difficult to perfect. 

The complexities of interrelating pump operating 

parameters are not easily modeled. Using methods that 

are not sensitive to slight changes of pump operating 

features would allow more applicable and reliable pump 

health diagnostics.  

Fourier transforms decompose a signal into its 

frequency content. From this decomposition, a power 

spectrum can be calculated to determine which 

frequencies are most prevalent in the signal. Similarly, 

wavelet analysis, a waveform signal analysis method 

performed by breaking up an evaluating signal into 

shifted and scaled versions of a standard wavelet, can 

identify feature signals in multiple decomposed band 

window of the original signal [8]. Where the FFT 

decomposes a signal into scaled versions of a sine wave, 

wavelet analysis can decompose a signal into both 

scaled and shifted versions of almost any waveform 

preserving the time parameter of the signal. Both 

methods are sensitive to changing of the evaluating 

signals in interested frequency bands. Therefore, these 

two methods are promising hydraulic pump fault 

detection techniques as each method allows for each 

system to create a characteristic pattern for the pump 

being monitored on a specific machine. This flexibility 

will eliminate errors often encountered by model-based 

techniques. 

In this paper, outlet pressure data of the pump is 

selected as the signal to evaluate because most hydraulic 

systems already have pressure gauges incorporated into 

the system for monitoring during operation. The 

presence of this signal in most hydraulic systems makes 

it a prime candidate to use in an on-line hydraulic pump 

health monitoring system. The pressure signals were 

analyzed using two methods, Fourier transforms and 

wavelet packet analysis, in order to achieve high 

accuracy and reliability for pump performance 

monitoring. 

 

FUNDAMENTAL OF METHODOLOGY 

 

FOURIER TRANSFORMS – Fourier transforms 

decompose a signal into its frequency content by 

comparing various scales of a sine wave to the signal. 

The result is a frequency versus amplitude relationship. 

Here, the discrete Fourier transform in Eq. (1) is 

calculated using the Fast Fourier transform (FFT) 

algorithm. 
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From the Fourier transform of the pressure signal, the 

power spectra was calculated and used to determine 

which frequencies are most prevalent in the signal. 

WAVELET AND WAVELET PACKET ANALYSIS - 

Wavelet analysis is a waveform signal analysis method 

performed by breaking up an evaluating signal into 

shifted and scaled versions of a standard wavelet. 

However, there are two important differences between 

wavelet analysis and Fourier transforms. Where the FFT 

decomposes a signal into scaled versions of a sine wave, 

wavelet analysis can decompose a signal into scaled and 

shifted versions of almost any waveform. Waveforms 

can be selected to closely match the shape of the signal 
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being analyzed. Selecting a waveform to be similar to a 

normal signal provides more sensitivity to detecting 

changes [8]. Secondly, wavelet analysis retains the time 

dimension of the data. The chosen wavelet is compared 

to local sections of the signal through translation of the 

wavelet along the signal at different dilations or scales 

of the mother wavelet. Wavelet coefficients are 

preserving the time parameter of the signal. This 

distinguishing feature of wavelet analysis allows the 

time of a specific event to be identified. For this 

research, the discrete wavelet transformation (DWT) is 

used. The DWT uses the power-of-two logarithmic 

scaling of both the dilation and translation steps, known 

as a dyadic grid arrangement. The discrete wavelet 

transform of a signal using a mother wavelet 
, ( )

m n
tψ  

using the dyadic grid is shown in Eq. (2). 
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Where, nm,  range over Ζ (integer space). For a 

special choice of ( )tψ , the discrete wavelets can 

constitute an orthonormal basis, and a signal ( )f t can 

be represented by the sum of its smooth approximation 

(low-pass) and its detail description (band-pass), which 

is given by 
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Where, the first term 
0

( )
m

P f t is the coarser 

approximation of ( )f t  in scale m0, and the second 

term ( )mD f t  leads to the differences among each 

dilation. ( )tϕ  is the so called ‘scaling function’ [9]. 

Consequently, there is 
0 0 01

( ) ( ) ( )
m m m

P f t P f t D f t
−

= + . 

Which implies that: if a signal is fine-scale 

approximated at 
0 0

( )
m

P f t f= , then it can be 

decomposed into 
0 00 1 1 1 1
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f P f t D f t f d
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where 1f  is the next coarser approximation of 0f , and 

1d  is what is lost in the transition from scale m0 to m1. 

Using the same approach, the ith level decomposition of 

the original signal if  can be further decomposed into 

1 1i i if f d+ += + , i = 1, 2, ..., . The approximation of 0f  

in the ith level can be represented with the 

approximation coefficient vector with the scaling 

function, whilst the detail of 0f  is represented with the 

detail coefficient vector and the scaled mother wavelet 

as shown in Eq. (4). 
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In harmonic analysis, such a decomposition procedure is 

referred to as a ‘two-channel’ sub-band filtering scheme. 

The incoming sequence is convolved with two different 

filters, one low-pass and one high-pass. The two 

resulting sequences are then sub-sampled. Based on this 

scheme, a set of examining signals is decomposed using 

a low–pass filter and a high–pass filter, which results in 

two sets of sub–band signals. The sub–bands signals are 

then reassembled to perform wavelet analysis. 

Schematically, the scheme of a three–level 

decomposition wavelet analysis to reassemble the 

original signal and the sub-band by each sub-sampled 

signal can be represented as shown in Figure 1. 
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Figure 1 A three level wavelets decomposition scheme 
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Figure 2 Wavelet packet decomposition 
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approximation of the signal is further decomposed and 

the number of details depends on the level of 

decomposition, wavelet packet analysis decomposes 

both approximations and details of a signal. Hence, 

wavelet packet analysis is capable of identifying feature 

signals in multiple decomposed band windows of the 

original signal. Figure 2 illustrates the decomposition of 

a signal using wavelet packet analysis with three level 

decomposition.  

From wavelet analysis of the pressure signal, the 

wavelet coefficients corresponding to interested 

sub-band are calculated and used to determine if defects 

of the monitored pump occur. 

 

FAULT DETECTION AND DIAGNOSIS RESULTS 

 

SIGNAL SELECTING - The common faults of an axial 

piston pump include swash plate wear, control (or 

valve) plate wear, loose of the ball-socket joints, bearing 

failure, and fatigue failure of the central return spring. 

Those faults will be reflected in the pump discharge 

pressure and are normally buried in the pressure 

pulsating signals. Furthermore, other fault scenarios, 

such as cavitation, hydraulic blocking, pipe resonance 

and leakage, will also be reflected in the discharge 

pressure signals. Thus, the pressure signal covers 

sufficient information and takes little effectives of the 

background noise signals because of its property of 

‘inner measurement’. When compared with the 

vibration signal, the pressure signal is considered more 

suitable for the analysis and detection of faults of the 

axial pump. This paper considers two kinds of common 

faults of the axial piston pump, namely control plate 

wear and loose ball-socket joints. For validating the 

proposed method, simulations and analysis based on a 

theoretical model are carried out prior to completing the 

experiment itself.  

SIMULATION ANALYSIS – A simulation model of 

piston pump was developed for this investigation in 

previous work [10]. For a pump with seven pistons, 

where the rotational speed is n (rpm), then the rational 

flow pulsation frequency is ω1 = 14πn/60 (rad/s), the 

disturbance frequency due to piston ball-socket 

excitation is ω2 = 2πn/60 (rad/s), and the disturbance 

frequency due to swash plate excitation (ω3) depends on 

the worn condition of the swash plate. Under normal 

operating conditions, the pump speed (n) was set at 

1470 rpm, and the swash plate was worn within the 

high-pressure area. This resulted in the following 

parameters for the model: ω1 = 1077.57 (rad/s) = 171.5 

(Hz), and ω2 = ω3 = 153.94 (rad/s) = 24.5 (Hz).  

In this case, ω1 is the highest frequency, and ω2, ω3 are 

each ω1/7. Therefore, the proper critical frequency 

should be around ω2. the simulation signals of the 

normal condition and two malfunction scenarios are 

shown in Figure 3. 

 

 

 

Figure 4 shows the Fourier transform result for the 

simulation results. From these plots, the feature 

frequencies are identified to be 25 Hz, 158 Hz, and 185 

Hz. Where frequencies of 158 and 185 Hz figure out the 

normal pulsation frequencies of outlet pressure of the 

pump, the frequency 25 Hz features malfunction of 

pump. The power spectrum changes most between 

pumps at the 25 Hz regions. Therefore, the power of the 

signal was summed for a 30 Hz window around this key 

frequency in order to create a feature parameter to 

judging the performance of the monitored pump. 

By applying Fourier transform, the summation of the 

spectra power of each fault signal from 10 Hz to 40 Hz 

is compared with the one of the normal signal to form a 

relative residual. Similarly, applying a three level 

wavelet packet transform to the original pressure signals, 

eight wavelet coefficients can be obtained for each 

signal. The square root of the summation of square 

coefficient vector to each wavelet coefficient is 

calculated to construct a wavelet feature parameter. 

Then the fault wavelet feature parameters are compared 

with the normal feature parameters to determine the 

residuals of wavelet analysis. This process can be 

described as the following equation: 
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(a) Normal pressure signal 
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(b) Defects excited by piston ball-socket loose 
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(c) Defects excited by swash plate worn 

 

Figure 3 Simulation results based on the pump 

pulsation model 
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where, FR is the Fourier residual, fP, nP the fault and 

normal power of signal. WR is the residual of the 

wavelet analysis, fc, nc the fault and normal wavelet 

coefficients. The results are shown in Table 1. 

When looking round the simulation results shown in 

Table 1, it can be seen that the Fourier residuals and the 

wavelet residuals within 23 to 46 Hz are sensitive to the 

change of pump performance. If the obtained residual 

value exceed relative threshold value for a health pump, 

it can conclude that the corresponding pump is faulty. 

This result can be used to design an on-line pump 

performance monitoring and diagnosis algorithm. 

 

 

EXPERIMENTAL VALIDATION - The validation test 

of the proposed fault diagnosis methods are conducted 

on a laboratory scale hydraulic system test-rig. The 

test-rig consists of an electro-hydraulic servo valve, two 

testing pumps (a normal pump and a defected pump), 

and other auxiliary devices and sensors. The pumps 

used in this test are 10 ml/rev fixed displacement axial 

piston pumps. Both pumps were operated at 1,470 rpm. 

The system pressure was 6.5x10
6
 Pa set by a relief valve. 

The pressure sensors are installed on the discharge port 

of the pumps for collecting the pressure signals. When 

one pump was being tested, the otherpump was shut off 

to avoid any possible inference to the discharge pressure 

of the testing pump. The obtained pressure signal was 

analyzed on–line using a MATLAB program developed 

for this research based on the method discussed earlier 

in this article. 

Figure 5 shows the pump discharge pressure obtained 

from the normal pump, a defective pump with loose 

ball-socket, and a defective pump with a worn swash 

plate. The residuals obtained are shown in Table 2. 

Comparing the results showed in Figure 5, the raw 

signals, the discharge pressures, showed little difference 

between the normal pump and the defected pumps. This 

indicates that the surface data (for the pump outlet 

pressure), was not able to provide sufficient information 

to support pump health diagnosis. After applying 

wavelet decomposition on the raw pressure signals from 

three pumps, wavelet residuals from both defected 

pumps (within 23 to 46 Hz and 69 to 93 Hz) resulted in 

wilder variations than that of the normal pump. Both the 

theoretical analysis and experimental tests showed that 

the 3
rd

 level wavelet decomposition could extract the 

feature signals from pump discharge pressure signal for 

diagnosing the piston pump health conditions. More 

importantly, the patterns of the coefficient changes were 

different for different types of pump defects. This fact 

verified that the wavelet analysis method can improve 

the capability of diagnosing the health conditions of the 

piston pumps by decomposing the original pulsation  
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Figure 4 Spectra analysis of the pressure signal 
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(a) Normal pressure signal 
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(b) Defects excited by piston ball-socket loose 
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(c) Defects excited by swash plate worn 
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(d) Spectra power of the pressure signal 

 

Figure 5 Test pressure signals 
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Table 1 Simulation results: Fourier residuals and wavelet residuals 

Wavelet packet analysis WR 
 

Spectra analysis 

FR Sub-band (Hz) 0-23 23-46 46-69 69-93 93-116 116-139 139-162 162-185 

fnormal 0 fnormal  0 0 0 0 0 0 0 0 

ffault1 3.6 ffault1 0 0.263 0.004 0.021 0.085 0.036 0.003 0.0027 

ffault2 15.07 ffault2 0 0.938 0.004 0.039 0.079 0.043 0.003 0.0017 

 

 

Table 2 Test results: Fourier residuals and wavelet residuals 

Wavelet packet analysis WR 
 

Spectra analysis 

FR Sub-band (Hz) 0-23 23-46 46-69 69-93 93-116 116-139 139-162 162-185 

fnormal 0 fnormal  0 0 0 0 0 0 0 0 

ffault1 0.089 ffault1 0.003 0.668 0.707 0.883 0.201 0.178 0.470 0.368 

ffault2 2.738 ffault2 0.002 0.949 0.309 0.553 0.871 0.439 0.212 0.322 

 

 

pressure signals, and that the patterns and the 

amplitudes of wavelet coefficients obtained from 

different decomposed signal windows are relevant to the 

types of pump defects. 

 

CONCLUSIONS 

 

The use of discharge pressure provided the direct 

information for the diagnosis of the health of system 

signals. This can improve the diagnostic accuracy by 

overcoming the limitations caused by noise and 

disturbances acting on the indirectly measured signals. 

The following concluding remarks follow from the 

results obtained from theoretical analysis and 

experimental testing. 

• The decomposition of the original pressure signals 

resulted in sub–band informative signals. 

Reassembling these sub–bands signals and 

comparing them with a standard wavelet resulted in 

distinguishable changes between wavelet 

coefficients from normal and defective pumps.  

• The differences in the patterns and amplitudes of 

the resulting wavelet coefficients within different 

band windows provided distinguishable features to 

identify the types of pump defects.  

• The validation tests proved that the wavelet 

analysis could be implemented on–line to support 

real–time health diagnosis without affecting the 

normal operation of the pump. 
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