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ABSTRACT

Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results
in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential
of overcoming these problems, and in this paper the focus is on developing and applying several different feedback
linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare
their possiblities and limitations. This is done based on both simulation and experimental results.
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NOMENCLATURE

Ap : Cylinder piston area
Bt : Viscous friction coefficient
CL : Leakage coefficient
FL : External load force on the piston
Kv : Valve discharge coeffient
Meq : Equivalent mass being accelerated
pA, pB : Cylinder chamber pressures
pL : Load pressure, defined aspL = pA − pB

pS : Supply pressure
pT : Tank pressure
u : Control signal to servo valve
xP : Cylinder piston position
VA, VB : Volume in cylinder chambers
βF : Effective oil bulk modulus

INTRODUCTION

In the last decades electrical drives have become increas-
ingly popular, due to the advances in power electronics
and frequency inverters, but hydraulic servo-systems still
find a variety of applications in industrial motion control
due to its high size-to-torque ratio [1]-[4]. The use of
hydraulics is for instance still widespread in areas of
machining plants, mining etc. [5]. Often however, these
hydraulic drives are controlled using linear controllers,
which degrade the obtainable performance of the drive,
as most hydraulic systems are intrinsically non-linear
and have time-varying parameters. The non-linearities,
combined with large parameter ranges means that is
difficult to achieve satisfactory performance, as the linear
controllers have to be dimensioned conservatively to



ensure stability. In addition, the natural damping in
these system are in general very low. Non-linear control
techniques have the potential of overcoming these prob-
lems, and in this paper, the problem of tracking control
of electro-hydraulic servo actuators using feedback
linearisation applied to a hydraulically driven test robot
is addressed. In its simplest form, feedback linearisation
in this way amounts to cancelling the non-linearities in
a non-linear system, so that the closed-loop dynamics
become linear and may hence be controlled by linear
controllers.

SYSTEM DESCRIPTION

The system considered in this paper is a two degrees-of-
freedom rotary arm manipulator with a high-frequency
servo valve controlled hydraulic cylinder driving each
link. An illustration of the system is shown in Figure 1.
This system is, as many hydraulic systems, characterised
by the highly non-linear nature of the servo valve pres-
sure/flow characteristic, friction effects, a very low damp-
ing ratio and dynamics that strongly depends on the op-
erating point and the physical parameters describing the
system.

Figure 1 3D illustration of the hydraulic servo robot used
as test case.

Considering each of the servo valve controlled cylinders
separately, these may be model by the following equa-
tions. The force balance equation applied to the cylinder
piston is given by:

MeqẍP = pLAP −BtẋP − FL (1)

Neglecting the dynamics of the servo valve, the flow

through the servo valve may be described by:

QA=
{

Kvusign(pS − pA)
√
|pS − pA| , u ≥ 0

Kvusign(pS − pB)
√
|pS − pB | , u < 0

(2)

QB=
{

Kvusign(pB − pT )
√
|pB − pT | , u ≥ 0

Kvusign(pA − pT )
√
|pA − pT | , u < 0

The cylinder chamber pressures are found from the con-
tinuity equation:

ṗA =
βF

VA,0 + AP xP
(QA −AP ẋP − CLpL) (3)

ṗB =
βF

VB,0 −AP xP
(AP ẋP −QB + CLpL) (4)

INPUT-OUTPUT LINEARISATION OF THE HSS
MODEL

The above model is the basis for the input-output lineari-
sation. Representing this as a state model, with the state
vectorx = [xP ẋP pA pB ]T :

ẋ =


x2

1
Meq

(AP (x3 − x4)−Btx2 − FL)
βF

VA
(−AP x2 − CL(x3 − x4))

βF

VB
(AP x2 + CL(x3 − x4))



+


0
0

βF

VA
H(x3, x4)

− βF

VB
I(x3, x4)

u (5)

whereH(x3, x4) = QA and I(x3, x4) = QB are the
flow expressions given by Eq. (2).

Compensation of Pressure Dynamics

In the following the feedback linearisation approach will
be used to compensate for non-linearities related to the
pressure dynamics. This is done by considering only the
part of the model, with the state vectorxT = [pA pB ]:

ẋ =

[
βF

VA
(−AP x2 − CL(x3 − x4))

βF

VB
(AP x2 + CL(x3 − x4))

]
(6)

+

[
βF

VA
H(x3, x4)

− βF

VB
I(x3, x4)

]
u

Define the output as the force:

y = AP (pA − pB) = AP (x3 − x4) (7)



Following the approach in [6], we set up the quantities:

∇h = [AP −AP ] (8)

Lgh = ∇hg (9)

=
βF AP

VA
H(x3, x4) +

βF AP

VB
I(x3, x4)

Lfh = ∇hf (10)

=
(

βF AP

VA
− βF AP

VB

)
(−AP x2 − CL(x3 − x4))

whereLfh is the Lie derivative of the scalar functionh
with regard to the vector functionf . The Lie derivative
and repeated Lie derivatives being defined as:

Lfh = ∇hf =
∂h

∂x
f(x) (11)

Li
fh = Lf (Li−1

f h) = ∇(Li−1
f h)f i = 1, 2, ... (12)

with ∇ =
[

∂
∂x1

∂
∂x2

... ∂
∂xn

]
denoting the gradient

operator.

SinceLgh 6= 0 the control law is selected as:

u =
1

Lgh(x)
(−Lfh(x) + ν) (13)

which yields a force tracking system that converges ex-
ponentially to zero, if the desired force trajectory and its
first derivative is known. If the control law is substituted
into the system it results in the feedback linearised sys-
tem:

ẏ = AP (ẋ3 − ẋ4) = ν (14)

The plant describing the piston position is given by Eq.
(5). Hereby the last two equations are feedback linearised
by the control law in Eq. (13), and the first two equations,
describing the motion of the piston, are linear. Differen-
tiating the second equation of the system yields:

...
xP = ẍ2 =

1
Meq

(
AP (ẋ3 − ẋ4)−Btẋ2 − Ḟext

)
=

1
Meq

(
ν −Btẋ2 − Ḟext

)
(15)

or:
Meq

...
xP + BtẍP + K = ν (16)

whereK denotes the external forces and disturbances.

Controller Design
The above feedback linearisation yields a system model
described by Eq. (16). The control law is selected as:

ν = M̂eq(
...
xd − kaë− kv ė− kpe) + B̂tẍP + K̂

= vT â (17)

where vT = [
...
xd − kaë− kv ė− kpe ẍP 1 ] and

âT = [ M̂eq B̂t K̂ ]. The constantŝMeq, B̂t andK̂
are estimates of the true values. Ifã is defined aŝa − a,
Eq. (17) can be rewritten as:

Meq(
...
e + kaë + kv ė + kpe) = vT ã = ãT v (18)

which, if Laplace transformed yields:

e =
1

s3 + kas2 + kvs + kp

[
M−1

eq vT ã
]

(19)

If â = a ⇒ ã = 0 resulting in exponential decay of the
error.
The closed-loop error dynamics of Eq. (18) can be de-
scribed by the following state-space equation:

ẋ = A x + B

[
1

Meq
ãT v

]
e = C x (20)

where:

x =

 e
ė
ë

 , A =

 0 1 0
0 0 1
−ka −kv −kp

 (21)

BT =
[

0 0 1
]
, C =

[
1 0 0

]
When designing the controller the constantska, kv andkp

can be found by pole placement of the system in Eq. (20).
Summarised the feedback linearised pressure controller
(FLPC) is implemented as:

u =
1

Lgh(x)
(−Lfh(x) + ν) (22)

ν = M̂eq(
...
xd − kaë− kv ė− kpe) + B̂tẍP + K̂

where

Lgh = ∇hg =
βF AP

VA
H(x3, x4) +

βF AP

VB
I(x3, x4)

Lfh=∇hf

=−
(

βF AP

VA
+ βF AP

VB

)
(AP x2 + CL(x3 − x4))

Using this controller as a pure state feedback, simulated
position tracking errors may be seen in Figure 2. The
errors are plotted when applying a sinusiodal reference
input for both the two cylinders, making these move from
one end position to the other and back in three seconds.
To test robustness a mass step of50 [kg] is applied to the
tool center point of the test robot after 6 seconds.



Figure 2 Simulated errors of HSS 1 and HSS 2 using the
FLPC. A mass step of50 [kg] is applied after6 [s].

A SIMPLIFIED FL CONTROLLER (FLSC)

The strategy derived above requires measurement of the
piston acceleration, and in this section a simplified model
is derived. This is done by neglecting the pressure dy-
namics in the cylinder chambers, assuming the pressure
build up to be instantaneous, whereby the flow from the
servo-valve is set equal to the displacement flow of the
cylinder piston. Neglecting the pressure dynamics yields:

AP ẋP + CLpL =
Kv√

2
u
√

pS − pT − sign(u)pL (23)

Why the control lawu is chosen as:

u =
√

2AP (ν − λpLx)
Kv

√
pS − pT − sign(u)pL

(24)

wherepLx is the load pressure (applied by the feedback
linearisation) andλ is a scaling factor. Equation (23) can
now be written as:

AP ẋP + CLpL = AP (ν − λpLx)⇔ (25)

pLx = −AP ẋP + CLpL −AP ν

AP λ
(26)

Substituting the load pressurepLx into the motion Eq. (1)
gives:

MẍP = AP pLx −Btẋ− FL ⇒

ν =
Mλ

AP
ẍP +

Btλ + AP

AP
ẋP +

FLλ + CLpL

AP

= a1ẍP + a2ẋP + a3 (27)

If the theory, used in the previous section, is applied to
the this second-order system, the control law becomes:

ν = â1(ẍd − kv ė− kpe) + â2ẋP + â3 = vT â (28)

wherevT = [ẍd−kv ė−kpe ẋP 1], âT = [â1 â2 â3]
and the constantŝa1, â2 andâ3 are estimates of the true
values.

This results in a system, where the closed-loop error
dynamics can be described by the following state-space
equation:

ẋ = A x + B

[
1
a1

ãT v

]
e = C x (29)

with:

x =
[

e
ė

]
, A =

[
0 1
−kv −kp

]
(30)

BT =
[

0 1
]
, C =

[
1 0

]
Summarised the controller is implemented as:

u =
√

2AP (ν − λpLx)
Kv

√
pS − pT − sign(u)pL

(31)

where

ν = â1(ẍd − kv ė− kpe) + â2ẋP + â3

Adjusting the controller parameters based on pole place-
ment, with the desired pole locations beingσ = −100±
40i, simulated position tracking errors are shown in Fig-
ure 3.

Experimental Results of the FLSC

To verify the performance of the controller, this is imple-
mented and tested on the laboratory setup. Implementa-
tion of the algorithm showed sensitity to noise in both the
position and pressure signals, why both of these had to be
filtered using second-order digitally implemented filters.
As a consequnce hereof the controller parameters needed
to be changed, so the poles were placed asσ = −20±20i,
which degraded the performance of the controller. Exper-
imental measurements using this controller are shown in
Figure 4.
Comparing the simulated and the experimantal results it
is seen that the measured tracking errors are approxi-
mately an order of magnitude larger than the simulated
due to the readjusted controller parameters.



Figure 3 Simulated errors of HSS 1 and HSS 2 using the
FLSC.

Figure 4 Errors of HSS 1 and HSS 2 using the FLSC on
the laboratory setup.

ADAPTIVE FEEDBACK LINEARISED
SECOND-ORDER CONTROLLER (AFLSC)

In the previous section the system parameters are esti-
mated and consequently the controller the parameters are
adjusted conservatively. In order to compensate for these
parameter variations an adaptive controller has been im-
plemented. For the error equation (29), a standard adap-
tive control law including both an “integral” and a “pro-
portional” part is chosen to:

ˆ̇a = −sign(a−1
1 )γev − sign(a−1

1 )α
d

dt
(ev) , γ, α > 0

(32)
The controller with adaptation capabilities to account for
unmodelled dynamics is thus implemented as:

Control law (AFLSC):

u =
√

2AP (ν − λpLx)
Kv

√
pS − pT − sign(u)pL

(33)

where

ν = â1(ẍd − kv ė− kpe) + â2ẋP + â3

Adaptation law (AFLSC, expanded): ˙̃a1q

˙̃a2

˙̃a3

 =

 ˙̂a1

˙̂a2

˙̂a3

 =

 c1

−γ2eẋP − α2
d
dt (eẋP )

−γ3e− α d
dt (e)


with c1 = −γ1e(ẍd−kv ė−kpe)−α1

d
dt (e(ẍd−kv ė−

kpe)).

A schematic illustration of the implementation is shown
in fig. 5. Simulation results for this controller are shown
in fig. 6 and experimental results are given in fig. 7.

Figure 5 Block diagram of the system using the AFLSC.

Figure 6 Simulated errors of HSS 1 and HSS 2 using the
AFLSC.

As seen from the results the performance of the AFLSC
is very good and the steady-state errors on both cylinder



Figure 7 Errors of HSS 1 and HSS 2 using the AFLSC on
the laboratory setup.

pistons are limited to±0.5mm. From the position track-
ing errors, shown in fig. 7, it may be seen that it is very
chattered, due to the velocity signal being obtained by
differentiating the position signal and filtering.

CONCLUSIONS

The focus of this paper has been the development and
comparison of several feedback linearisation controllers
applied on a hydraulic servo robot. In the first controller
(FLPC) a part of the model was linearised, namely the
pressure dynamics. This linearisation results in a linear
control system, but with varying inertia, which showed
good performance both in the case of varying parame-
ters and robustness to load changes. The disadvantages
of the controller is the number of needed state measure-
ments. The second controller (FLSC) was based on a
model reduced to a second-order system, by neglecting
the pressure dynamics. The controller showed very good
performance in the simulation, but was sensitive to noise
in the laboratory, why the controller parameters had to be
retuned, decreasing the performance considerably.

To improve the performance of the FLSC, the AFLSC
was developed by adding an adaptive control scheme,
whereby the performance was improved significantly.
Though the AFLSC is fairly complex, the controller pa-
rameters are easily adjusted. Common for the controllers
considered are that they are very robust to mass varia-
tions, as a stepwise increase in the tool centre point mass
by 50 [kg] has no significant influence on the resulting
position tracking error response.
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