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ABSTRACT 

 

Accurate predictions of pressure surges are crucial in many fluid-line systems.  There are several techniques available 

for modelling flow transients in hydraulic pipelines, offering different advantages and disadvantages and therefore 

suiting different applications.  In this paper four modelling methods are evaluated in terms of accuracy, computational 

efficiency and flexibility for laminar, single-phase flow in circular, rigid pipes.  These are the method of characteristics 

(MOC), the finite element method (FEM), the transmission line method (TLM), and the rational polynomial transfer 

function approximation (RPTFA) method, which is a form of modal approximation method.  All four methods were 

implemented in MATLAB/Simulink.  It was found that the RPTFA model potentially gives the most accurate solution, 

while the MOC and TLM models are the most computationally efficient.  The FEM is the least accurate out of the four 

methods, but it can be used with varying parameters and time steps thus providing the most modelling flexibility.   
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NOMENCLATURE 

 

A  Cross-sectional area 

B  Coefficient matrix 

c  Speed of sound 

C  Coefficient matrix 

C  Laplace transformed characteristic 

E  Coefficient matrix 

f  Friction term 

F  Coefficient matrix 

p  Pressure 

p  Pressure vector 

P1  Pressure at upstream end 

P2  Pressure at downstream end 

q  Flow 

q  Flow vector 

Q1  Flow at upstream end 

Q2  Flow at downstream end 

Z  Characteristic impedance 

Z0  Characteristic impedance constant 

Γ  Propagation operator 

ρ  Fluid density 

 

INTRODUCTION 

 

Hydraulic systems are widely used in the engineering 

world.  They often form an essential part of a total 

dynamic system in industries such as automotive, 



aerospace, petroleum, etc.   As these systems become 

more sophisticated, accurate analysis and close control 

of their performance becomes ever more crucial.  This 

in turn may require consideration of the dynamics of the 

hydraulic fluid transmission lines which can have a 

significant influence on system behaviour. 

Transient changes in flow can generate pressure waves 

that travel through the body of the fluid in the 

transmission lines.  This dynamic behaviour can be 

represented by the equations of motion and continuity, 

as follows (assuming cAq <</ ): 
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Hydraulic pipeline dynamics are well understood in the 

frequency domain.  However, obtaining the transient 

response of the system in the time domain requires 

approximating the hyperbolic functions which represent 

the frequency-dependent component of friction, f(q). 

There are several techniques available for solving 

equations (1) and (2) and approximating friction in the 

time domain.  The four most established modelling 

methods are the method of characteristics [1], the 

transmission line method [2], the modal approximation 

method [3], and the finite element method [4].  It is 

beyond the scope of this paper to present and discuss 

these in detail.  Here, these four methods are evaluated 

in terms of accuracy, computational efficiency and 

flexibility.  To this end, laminar flow transients in a 

rigid, circular pipeline were simulated in MATLAB.  

The system under investigation comprised a constant 

pressure source upstream and a valve downstream of the 

pipe.  Flow transients were generated by instantaneous 

valve closure.             

 

METHOD OF CHARACTERISTICS 

 

In the method of characteristics (MOC) the equations of 

motion and continuity are transformed into ordinary 

differential equations which can then be integrated 

along the ‘characteristic lines’.  The characteristic lines 

correspond to the motion of waves travelling at the 

speed of sound in both directions along a pipe.  

Friction in pipelines is frequency-dependent and its 

accurate and correct representation poses one of the 

biggest challenges in transient flow modelling.  

Although the steady-state friction component is well 

defined, the unsteady friction component can only be 

approximated for time-domain simulation.  Initial 

work by Zielke [5] provided an accurate solution, but at 

the expense of a very high computational load.  Trikha 

[6] and Kagawa et al. [7] later evaluated weighting 

factors for a series of unsteady friction terms, in an 

attempt to simplify computations.  A set of optimised 

coefficients was obtained by Taylor et al. [8] reducing at 

the same time the number of unsteady friction terms 

from five in Trikha’s model to four. 

All three unsteady friction approximations mentioned 

above were used to simulate the transient response of 

the system to an instantaneous valve closure.  The 

exact solution that was obtained from an inverse Fourier 

transform of the analytical response is plotted in figure 

1, along with the steady-state friction.  The three error 

traces are also plotted for comparison.  Johnston [9] 

recently proposed an alternative method of selecting the 

weighting factors using a geometric series.  The 

number of terms needed depends on the time step, but 

also on the value of the geometric series ratio.  It was 

found that a model with a ratio of 3 and three terms 

gives results almost identical to those obtained using the 

Taylor et al. and Kagawa et al. approximations, see 

figure 1. 
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Figure 1: Predicted transient response, MOC, different 

friction models 

 

In all the above simulations the friction terms are 

calculated at every node along the pipe and at every 

timestep.  In all simulations the pipeline was divided 

into 20 elements.  To reduce computation load, the 



friction terms can be lumped together at the end of the 

pipe.  Two cases were considered.  First, the 

frequency-dependent friction was lumped at the pipeline 

ends, while the steady-state friction was evenly 

distributed along the pipe.  In the second case, both 

friction components were lumped at the ends of the pipe 

during simulation.  The prediction errors, compared to 

the exact solution shown in figure 1, are plotted in 

figure 2.  A very similar response was obtained in both 

cases.  A 77.4% reduction in computational time was 

achieved in the first case, and an 87.2% in the second, at 

the expense of a slight loss in prediction accuracy. 
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Figure 2: Predicted transient response, MOC, lumped 

friction     

 

TRANSMISSION LINE METHOD 

 

The transmission line method (TLM) is similar to the 

MOC.  In the MOC a pipeline is divided into a number 

of elements and pressure and flow propagates between 

adjacent nodes over one timestep.  In TLM, the model 

only calculates these variables at the ends of a line and 

not at any internal nodes.  Obtaining the correct steady 

state pressure drop and rate of oscillation decay, 

however, requires careful modelling.  Krus et al. [2] 

proposed a TLM model where filters are used to 

approximate the frequency-dependent friction.  The 

system response can then be obtained by introducing 

characteristics C1 and C2 such that 
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The Simulink block diagram of the model is shown in 

figure 3.  The frequency and shape of the predicted 

pressure waves were found to be very inaccurate.  This 

is shown in figure 4, where the TLM prediction is 

compared with that obtained using the MOC.  Johnston 

[9] obtained much improved results by incorporating his 

friction model into Krus et al.’s model.  The 

predictions obtained using both a three- and a four-term 

Johnston friction model are also plotted in figure 4 for 

comparison.       
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Figure 3: Transmission line model 
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Figure 4: Predicted transient response, TLM and MOC 

 

MODAL APPROXIMATIONS 

 

The dynamics of a fluid transmission line can be 

expressed in terms of a so-called ‘dissipative’ 

distributed-parameter model using the following 

input-output relationship: 
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The line characteristic impedance Z and the propagation 

operator Γ are functions of the fluid properties and the 

radius and length of the line.  Obtaining an exact 

solution involves zero- and first-order Bessel functions. 

Several modal approximation techniques have been 

proposed over the years for the representation of the 



three transfer functions (TF) of equation (5).  Here, a 

recently proposed method by Wongputorn et al. [3] was 

used which utilises least-squares curve fitting in the 

frequency domain to match the frequency response of 

the original TFs to that of rational polynomial TFs over 

the frequency range of interest. 

When the rational polynomial transfer function 

approximation (RPTFA) method is used, it is very 

important to ensure that the transmission line model is 

very accurate throughout the modal frequencies of the 

other components of the system in which the line is an 

internal part and beyond any input disturbance 

frequencies, [3].  Different RPTFAs were obtained 

over different frequency ranges by defining the 

maximum desired frequency.  The latter was varied 

between 100 rad/s and 2000 rad/s.  At 1500 rad/s the 

TF approximations become inaccurate, and at 2000 

rad/s the solution becomes unstable.  The frequency 

response of one of the three TFs needed to model the 

system and its approximation, as obtained from 

Wongputorn’s MATLAB routine [10], is shown in 

figure 5.  The plotted approximation was obtained for a 

maximum frequency of 1000 rad/s. 
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Figure 5: Frequency response of transfer function 

‘ ΓΓ cosh/sinh
0
ZZ ’ and its approximation           

 

The RPTFA model, incorporating transfer function 

approximations for frequencies up to 1000 rad/s, was 

implemented in Simulink.  Because the system is 

mathematically stiff, the choice of ordinary differential 

equation (ODE) solver in the Simulink model is critical 

and an accurate solution cannot always be obtained.  

The solution often becomes unstable or very inaccurate, 

depending both on the approximation functions and the 

solver used. 

However, when good results were obtained using 

RPTFA they were found to be more accurate than the 

solution obtained with the MOC, as illustrated in figure 

6.  The phase shift between the exact and the MOC 

solution, which develops as the wave attenuates, is no 

longer present in the RPTFA solution.  Inaccuracies in 

the solver, however, make the RPTFA solution oscillate 

around the exact signal throughout the simulation.  

This behaviour is more evident in the early part of the 

solution.  The response of the system obtained using 

the RPTFA method is compared with that obtained 

using the MOC and the TLM techniques in figure 7. 
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Figure 6: Comparison between MOC and RPTFA 

methods   
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Figure 7: Comparison between MOC, TLM and RPTFA 

methods   

 

Provided that a stable numerical solution can be 

obtained using the available MATLAB solvers, the 

RPTFA model is the most accurate of all the models 

considered so far.  One of its main drawbacks, however, 

is that numerical solutions are often unstable or 

oscillatory.  To overcome this problem, more 

appropriate solvers for this application could be 

implemented in MATLAB.  Alternatively, different 

modal approximation methods that are available in the 

literature could be considered [11-13]. 



FINITE ELEMENT METHOD 

 

Finite element approximations to the equations of 

motion and continuity may be derived according to: 
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Here, the finite element method (FEM) proposed by 

Sanada et al. [4] and later extended by Taylor et al. [8] 

was chosen to simulate the transient response of the 

transmission line.  The FEM model uses an interlaced 

and unequally spaced grid of alternate pressure and flow 

nodes.  A genetic algorithm was applied by the authors 

to optimise the node spacing.  Grid points are spaced 

symmetrically about the mid point of the pipeline.  The 

optimisation algorithm minimises the error between the 

natural frequencies of the model and those of a specific 

pipeline for the extreme cases of closed and open end 

conditions.  The model incorporates the four-term 

laminar friction model proposed by Johnston [9]. 

When the optimised grid is used, the model exhibits a 

highly oscillatory behaviour during the first moments 

following the transient.  Less severe oscillations are 

present when the equally spaced grid is used.  These 

die out as the pressure wave attenuates and the shape of 

the pulsations for the optimised grid is better after the 

first two cycles.  As can be seen from figure 8, the 

period of the pressure wave is very slightly different for 

the two cases. 
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Figure 8: Comparison between optimised and equally 

spaced grid, FEM 

 

The transient response of the FEM model (40 elements) 

is compared with those obtained using the three 

modelling techniques presented above, namely MOC, 

TLM, and RPTFA, in figure 9.  While the prediction of 

the RPTFA model is the one closest to the exact solution, 

the prediction obtained using the FEM is the least 

accurate one.  However, the FEM was found to be 

reliable and not prone to instability. 
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Figure 9: Comparison between MOC, TLM, RPTFA, 

and FEM methods   

 

COMPUTATIONAL EFFICIENCY 

 

The performance of the different modelling techniques 

was compared in terms of computational efficiency.  

The most accurate models developed using the four 

different methods were chosen for the comparison.  

The transient response of the system was simulated on a 

2.4 GHz Pentium 4 PC with 1 Gb of RAM, for 2 

seconds following a sudden valve closure.  The results 

are summarised in the table below. 
 
 

Table 1 Computational times 

MOC 

No. of 

elements 

Friction model No. of 

terms 

Steady state 

friction 

Unsteady 

friction 

Computational 

time (s) 

20 Taylor et al. 4 distributed distributed 0.4680 

20 Kagawa et al. 7 distributed distributed 0.4850 

20 Johnston 3 distributed distributed 0.4530 

20 Johnston 3 distributed lumped 0.0790 

20 Johnston 3 lumped lumped 0.0630 

TLM 

Friction 

model 

No. of 

terms 

MATLAB 

Solver 

Time step Step size Computational 

time (s) 

Taylor et al. 4 ode4 fixed 10
-4
 1.2240 

Johnston 4 ode4 fixed 10
-4
 1.2645 

Johnston 3 ode4 fixed 10-4 1.0850 

Johnston 3 ode45 variable 10-3 (max) 0.1845 

Johnston 3 ode45 variable - 0.0700 

Johnston 4 ode45 variable - 0.4385 

RPTFA 

Frequency - 
max, (rad/s)  

MATLAB 
Solver 

Time step Computational 
time (s) 

Notes 

1000 ode23t variable 0.6955 

800 ode23tb variable 0.8545 

500 ode23t variable 0.9475 

Solution oscillates around 
exact response 

FEM 

No. of 

elements 

Friction 

model 

No. of 

terms 

Grid spacing Computational time (s) 

40 Johnston 4 uniform 2.521 

80 Johnston 4 uniform 13.148 

160 Johnston 4 uniform 180.866 

  



Obtaining the response of the RPTFA model using the 

MATLAB solvers often leads to unstable or oscillatory 

solutions.  Oscillatory solutions can either diverge 

from or converge to the exact system response.  The 

increased computational times shown in the last two 

rows of the RPTFA table can be mainly attributed to the 

high frequency oscillation of the model output around 

the exact system response.  Use of a more accurate and 

robust integrator may reduce computational times when 

the RPTFA model is used and help obtain more stable 

solutions. 

 

CONCLUSIONS 

 

A preliminary investigation of the performance of four 

different transient flow modelling techniques has been 

completed.  These techniques are the method of 

characteristics, the transmission line method, the finite 

element method, and the modal approximation method.  

The RPTFA model was found to give the most accurate 

solutions.  Computational times, however, are 10 times 

longer than those when the MOC model is used and an 

accurate solution cannot always be obtained with the 

existing MATLAB solvers.  The MOC model is best 

suited to a fixed time step, but accurate results in short 

computational times can be obtained when the friction 

components are lumped at the pipe ends.  Applying the 

TLM model provides both an accurate and 

computationally efficient method of simulating the 

response of the system, but integration problems can 

occur.  The FEM method is the least accurate and 

efficient in terms of computational time, but can handle 

non-linearities and varying parameters and time steps 

enabling thus the modelling of cavitation and 

air-release.      
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